Closing Data's Last-Mile Gap: Visualizing For Impact!

I worry about data’s last-mile gap a lot. As a lover of data-influenced decision making, perhaps you worry as well.
A lot of hard work has gone into collecting the requirements and implementation. An additional massive investment was made in the effort to perform ninja like analysis. The end result was a collection trends and insights.
The last-mile gap is the distance between your trends and getting an influential company leader to take action.
Your biggest asset in closing that last-mile gap is the way you present the data.
On a slide. On a dashboard in Google Data Studio. Or simply something you plan to sketch on a whiteboard. This presentation of the data will decide if your trends and insights are understood, accepted and inferences drawn as to what action should be taken.
If your data presentation is good, you reduce the last-mile gap. If your data presentation is confusing/complex/wild, all the hard work that went into collecting the data, analyzing it, digging for context will all be for naught.
With the benefits so obvious, you might imagine that the last-mile gap is not a widely prevalent issue. I’m afraid that is not true. I see reports, dashboards, presentations with wide gaps. It breaks my heart, because I can truly appreciate all that hard work that went into creating work that resulted in no data-influence.
Hence today, one more look at this pernicious problem and a collection of principles you can apply to close the last-mile gap that exists at your work.
For our lessons today, I’m using an example that comes from analysis delivered by the collective efforts of a top American university, a top 5 global consulting company, and